## ABOUT WHOLE NUMBERS

> (E) a whole number (F) un nombre entier

## I. Generalities

- If one number can be divided exactly by another number, the second number is a factor of the first.

Example: The factors of 20 are 1-2-4-5-10-20

- Multiples are numbers that are in the multiplication tables.

Example: Five multiples of 8 are 8-24-56-80-1600

- A prime number has only two factors, 1 and itself.

Example: The prime numbers up to 20 are 2-3-5-7-11-13-17-19.
Note that : 1 isn't a prime number ; 2 is the only even prime number.
History:
Eratosthenes was a Greek mathematician (276 BC-194 BC).


He's famous for devising a method for finding prime numbers, called "the Sieve of Eratosthenes".
Euclid, another Greek mathematician (330 BC-260 BC) proved that there are infinitely many prime numbers.

## Activity:

## The Sieve of Eratosthenes

- On a 100 square, cross out the number 1 , since it isn't a prime number.
- Circle 2 and then cross out all other multiples of 2 . The next number not crossed out is 3 .
- Circle 3 and then cross out all other multiples of 3 . The next number not crossed out is 5 .
- Circle 5 and then cross out all other multiples of 5 . The next number not crossed out is 7 .
- Continue the process until no more numbers can be circled.

The circled numbers are all the prime numbers less than 100 .

- Indices $a^{n}$ : $\quad a$ is the base $\quad n$ is the index (or power)

Note that : index (in the singular) - indices (in the plural)
Example: $7^{5}$ is read as " 7 to the power of 5 ", it means $7 \times 7 \times 7 \times 7 \times 7$.

- Square numbers are whole numbers raised to the power of 2.

Examples: $6^{2}=6 \times 6=36$ ("six squared")
(E) to square (F) prendre le carré de

1-4-9-16-25-36-49-64-81-100 are square numbers.
Square numbers can be illustrated by drawing squares:

$1 \times 1$

$2 \times 2$

$3 \times 3$

$4 \times 4$

$5 \times 5$

- Cube numbers are whole numbers raised to the power of 3 .

Examples: $4^{3}=4 \times 4 \times 4=64$ ("four cubed")
(E) to cube (F) prendre le cube de

1-8-27-64-125-216 are cube numbers.
You can draw a cube to illustrate cube numbers:


- $J$ is the square root sign. Taking the square root is the opposite of squaring.

Example: $\sqrt{25}=5$ since $5^{2}=25$
(E) to take the square root (F) prendre la racine carrée de

- $3 \sqrt{ }$ is the cube root sign. Taking the cube root is the opposite of cubing.

Example: $\sqrt[3]{64}=4$ since $4^{3}=64$
(E) to take the cube root (F) prendre la racine cubique de

- The reciprocal of $a$ number $\frac{a}{b}$ is $\frac{b}{a}$ (with $a$ and $b$ different from zero).

Example: The reciprocal of $\frac{4}{9}$ is $\frac{9}{4}$.
(E) the reciprocal of a number
(F) I'inverse d'un nombre

Note that : Multiplying a number by its reciprocal gives 1 ; zero has no reciprocal.

## II. BIDMAS

BIDMAS is a made-up word that helps you to remember the order in which calculations take place.


The brackets are worked out first, then division and multiplication are done before addition and subtraction.
Examples: Work out these expressions:

III. PRIME FACTORS

Prime factors are factors that are prime numbers.
Some numbers can be written as the product of their prime factors.
Example: Decomposition of 30
$30=2 \times 15=2 \times 3 \times 5$ and 2-3-5 are prime numbers

## IV. HCF - LCM

## 1. Highest Common Factor

The highest factor that two numbers have in common is called the Highest Common Factor (HCF).
Example: Find the HCF of 60 and 84
You write the numbers as a product of their prime factors.
$60=2 \times 2 \times 3 \times 5$
$84=2 \times 2 \times 3 \times 7$
You ring the common factors. These give the HCF as $2 \times 2 \times 3=\underline{12}$.

## 2. Lowest common multiple

The Lowest Common Multiple (LCM) is the lowest number that is a multiple of two or more numbers.

Example: Find the LCM of 14 and 20.
Write the numbers as a product of their prime factors, and ring the common factors.
$14=2 \times 7$
$20=2 \times 2 \times 5$
Line up the columns carefully.
The LCM of 14 and 20 is : $2 \times 2 \times 7 \times 5=\underline{140}$

