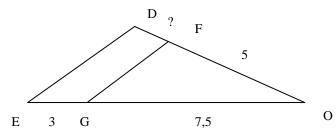

SUDOMATHS 1


		a				e	d	
			b	С			a	
h				f				b
c					h		e	
b		d				i		a
	e		С					h
d				g				e
	a			b	f			
	c	f				a		

a) Valeur manquante dans la figure suivante

b) Valeur manquante DF dans la figure ci-contre où (DE) est parallèle à (FG)

c) Nombre de bissectrices dans un triangle.

d) PGCD (1458; 477)

e) Numérateur de la fraction égale à $2 \times \frac{1}{5} - \frac{1}{6}$

f) 5⁰

g)
$$\sqrt{12} - \sqrt{48} + 2\sqrt{75} = g\sqrt{3}$$

h) On lance un pentaèdre dont les faces sont numérotés 1; 2 ; 3 ; 4 et 5 et on lit le chiffre de la face supérieure. Combien y a t-il d'issues possibles?

i) On pose $f(x) = x^2 - 3x - 4$. Calculer f(-2)